您当前的位置:首页 >> 地理
双语演讲|科技进步有止境吗?
发布时间:2019-10-01
 

Is there a limit to technological progress?

科技进步有止境吗?


Many generations have felt they’ve reached the pinnacle of technological advancement, yet look back 100 years, and the technologies we take for granted today would seem like impossible magic. 

每一代人都觉得他们当时已经抵达科技进步的顶峰。然而我们当下习以为常的科技,在一百年前就好像奇迹般的魔术。


So will there be a point where we reach an actual limit of technological progress? And if so, are we anywhere near that limit now?

那么,科技发展的极限真的存在吗?如果存在,现在的我们离它又有多远呢?


Half a century ago, Russian astronomer Nikolai Kardashev was asking similar questions when he came up with a way to measure technological progress, even when we have no idea exactly what it might look like. Anything we do in the future will require energy, so Kardashev’s scale classifies potential civilizations, whether alien civilizations out there is the universe or our own, into three levels based on energy consumption. The tiny amount of energy we currently consume pales next to what we leave untapped.

半个世纪前,俄罗斯宇航员尼古拉卡尔达夫提出了相似的问题。他设想了一种衡量技术先进等级的方法,尽管我们对此还没有准确的认知。因为万事都需要能量, 所以卡尔达夫指数把潜在的文明(无论是宇宙中的外星文明,还是地球文明)都按照能量消耗分成了三类。相比尚未使用的能源,我们眼下消耗的能源微不足道。


A type I, or planetary civilization, can access all the energy resources of its home planet. In our case, this is the 174,000 terawatts Earth receives from the Sun. We currently only harness about 15 terawatts of it, mostly by burning solar energy stored in fossil fuels. 

类型I——行星文明,可以充分利用行星所有能源。对人类来说,就是地球从太阳吸收到的17.4万太瓦的能量。我们仅消耗了其中的15太瓦,主要方式是燃烧化石燃料中蕴藏的太阳能。


To approach becoming a Type I civilization, we would need to capture solar energy more directly and efficiently by covering the planet with solar panels. Based on the most optimistic models, we might get there within just four centuries. 

想要更接近类型I的文明,我们需要在地球上铺满太阳能板,来更直接有效地吸收太阳能。根据最乐观的数据模型,只需要四个世纪内就可以达到这个目标。


What would be next?

那么接下来呢?


Well, the Earth only gets a sliver of the Sun’s energy, while the rest of its 400 yottawatts is wasted in dead space. 

事实上,地球只获得了极少的太阳能,其余400尧它瓦特太阳能都浪费在了死寂的宇宙中。


But a Type II, or stellar civilization, would make the most of its home star’s energy. 

但是类型II——恒星文明, 可以充分利用恒星的能量。


Instead of installing solar panels around a planet, a Type II civilization would install them directly orbiting its star, forming a theoretical structure called a Dyson Sphere. 

在类型II文明中,可以直接环绕恒星安装太阳能板,而不是安装在行星上,从而形成一种理论结构——“戴森球”。


And the third step?

那第三步呢?


A Type III civilization would harness all the energy of its home galaxy. 

类型III可以利用银河系的能量。


But we can also think of progress in the opposite way. How small can we go?

但我们也可以反向思考这一过程。人类可以达到多小的维度?


To that end, British cosmologist John Barrow classified civilizations by the size of objects they control. That ranges from mechanical structures at our own scale, to the building blocks of our own biology, down to unlocking atoms themselves. We’ve currently touched the atomic level, though our control remains limited. But we potentially could go much smaller in the future. 

为此,英国宇宙学家约翰巴罗把文明分为几个等级,依据是文明所控制物质的大小。从以人类标准衡量的机械结构,到人类生物学基础成分,再到原子解析结构——尽管人类控制能力依然有限,但目前已经进展到原子层级。不过,未来人类有可能推进到更小的层级。


To get a sense of the extent to which that’s true, the observable universe is 26 orders of magnitude larger than a human body. That means if you zoomed out by a factor of ten 26 times, you’d be at the scale of the universe. 

人类可观测到的宇宙比人体大26个数量级。为了理解这种理论的真实程度,可以把宇宙缩小10的26次方倍,人类和宇宙就处于同一层级了。


But to reach the minimum length scale, known as the Planck length, you would need to zoom in 35 times. As physicist Richard Feynman once said, “There’s plenty of room at the bottom.”

但是为了观察到最小长度——普朗克长度,需要把人体放大35倍。正如物理学家理查德费曼所言:“微观世界有无垠的空间”。


Instead of one or the other, it’s likely that our civilization will continue to develop along both Kardashev and Barrow scales. Precision on a smaller scale lets us use energy more efficiently and unlocks new energy sources like nuclear fusion, or even antimatter. 

人类文明可能会同时遵循卡尔达舍夫等级和巴罗等级继续发展,这不是非此即彼的选择。较小层级上的精确控制让我们能更有效地利用能源、开发新能源,比如核聚变,甚至是反物质。


And this increased energy lets us expand and build on a larger scale. A truly advanced civilization, then, would harness both stellar energy and subatomic technologies. 

而更多的能源让人类能获得更大规模的发展与建设。 一个真正先进的文明,可以同时利用恒星能量和亚原子技术。


But these predictions weren’t made just for us humans. They double as a possible means of detecting intelligent life in the universe. If we find a Dyson sphere around a distant star, that’s a pretty compelling sign of life. 

这些设想并非只可为人类所用,也许能据此探测宇宙中的智慧生命。如果我们在遥远的恒星周围找到了戴森球,那极有可能标志着生命的存在。


Or, what if, in stead of a structure that passively soaked up all the star’s energy, like a plant, an alien civilization built one that actively sucked the energy out of the star like a hummingbird. 

还有一种可能,假如外星文明不是像植物一样被动地吸尽恒星的能量,而是像蜂鸟一样主动吸出恒星的能量,那又会怎么样呢。


Frighteningly enough, we’ve observed super dense celestial bodies about the size of a planet that drain energy out of a much bigger star. It would be much too premature to conclude that this is evidence of life in the universe. There are also explanations for these observations that don’t involve alien life forms. But that doesn’t stop us from asking “what if?”.

可怕的是,我们曾观测过超高密度的天体,其大小如行星,却从一个体积大得多的恒星攫取了所有能量。但这还不足以证明宇宙中存在其他生命。也有人对这种现象另有解释,认为它们并不涉及外星生命形式。但人类还是会思考“如果真的存在呢?”。


注释:

1. Kardashev scale 科尔达舍夫等级

一种用来衡量一个文明的技术的先进等级的方法,以一个文明能用来与通讯交流外行星的能量的多少为基础。

类型I :该文明是行星能源的主人,这意味着他们可以主宰这颗行星以及周围卫星能源的总和。

类型II :该文明能够收集整个恒星系统的能源。

类型III :该文明可以利用银河系系统的能源而为其所用。

2. Dyson Sphere 戴森球

  直径2亿km不等,用来包裹恒星开采恒星能的人造天体。

3. terawatts (TW)太瓦

      1太瓦=1012瓦

4. yottawatt 尧它瓦特

     1 yottawatt = 10的26次方瓦特

5. 数量级

通常情况下,数量级指一系列 10 的幂。

6.  Planck length普朗克长度

    长度的自然单位,有意义的最小可测长度。